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An interacting Ising spin system on a lattice with the competing influence of 
spin-flip (Glauber) and spin-exchange (Kawasaki) dynamics is studied. The 
exact nonequilibrium steady-state solution of the pair correlation function in 
one dimension is derived and compared with the simulation data. The two- 
dimensional solution, under some Ansatz, is also discussed. 
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1. I N T R O D U C T I O N  

I investigate a lattice spin model  with two compet ing stochastic dynamics, 
which has recently been used by De Masi et al/1) to derive a r igorous reac- 
tion-diffusion equation. Each dynamics  is known to relax the spins into an 
equilibrium state of the Ising model  corresponding to its own temperature 
(i.e., /3 -1 for the Glauber  dynamics and oe for the Kawasaki  dynamics),  
while the mixed dynamics will bring the system into a nonequil ibrium 
stat ionary state. The study of s tat ionary nonequil ibrium microscopic states 
is a problem of great interest. (2) Wha t  we would like to know is how these 
states differ from the corresponding Gibbs states by turning on some non- 
equilibrium parameters.  

Here ! consider a simple lattice in d dimensions, d =  1 or 2, where at 
each site there is a spin a x = _+1, a = {ax [x ~ Za}. The two mechanisms via 
which a configurat ion changes with time are: ( i ) the  Glauber  dynamics in 
which a spin flips at a site x, ~ -*  ~x, with a rate W(ax), and (ii) the 

i Department of Physics, Rutgers University, New Brunswick, New Jersey 08903. 
2 Present address: Courant Institute of Mathematical Sciences, New York, New York 10012. 

1217 

0022-4715/88/1200-1217806.00/0 �9 1988 Plenum Publishing Corporation 



1218 Zhang 

Kawasaki dynamics, in which unequal nearest neighboring spins ax and crx, 
exchange, o-~ a x'x', with a constant rate. 

In one dimension, I take the standard rate function (3) 

W(Ox)  = 5 I - -  ~ Ox(O x 1 + Ox+ 1) (1 )  

and in two dimensions, I take (4) 

where the sum runs over the nearest neighbor sites of x; throughout this 
paper, I use x', y'  to indicate the nearest neighbors of x, y, etc. 

These rates satisfy detailed balance for the corresponding Gibbs states 
of the Ising model with the nearest neighbor interaction J at the reciprocal 
temperature//, provided one chooses 

1 y = t l ,  72 = ~(t2 + 2tl), 62=�89 (3) 

with tm =-- tanh(2mflJ). 
The exchange process, on the other hand, being independent of the 

neighboring spin configuration, acts as if the system were at infinite tem- 
perature. The dynamics of the spin distribution function P(o-, t) is described 
by a master equation of the form 

d 
,it P(o-, t )= Y' I -w(-  o-x)e(,~ ~, t ) -  w(,r~)e(o-, t)] 

x 

+ ~ ~ V(a~, ax,)EP(o x'x', t ) -e (~r ,  t)] (4) 
< x,x' ) 

where 

v ( ~ < ,  ~x, )  = �89 - a x a x , )  (5) 

Notice that I have chosen a time scale such that e is the only relevant 
parameter characterizing the ratio of the time scales of the two competing 
dynamics. 

From (4), one obtains the "equation of motion" for the pair 
correlation function R~,y = (O'xO'y), for Ix -Yl  > 1, 

d 
dt Rx. y = - 2 (  axcryE W(ox) + W(O'y) ] ) 

axay V(ax, ax,) + ~. V(ay, ay,) (6) 
y' 
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2. D E R I V A T I O N  OF THE O N E - D I M E N S I O N A L  PAIR 
C O R R E L A T I O N  F U N C T I O N  

In one dimension, (6) becomes 

_ 7 + e  dR~,=-2(l+e)R~y+---~-(R~+l,y+R~_~,y+R~y+~+R~y_l) (7) 
dt . . . . . .  

which is true only for F x - y ]  > 1. Due to the constraint Rx, x - 1 ,  the 
equation for Rx + ~,x is inhomogeneous, 

_ , 7 + e  dR~+,x=-(2+~)R~+Lx+--~--(R~+2~+Rx+I~ 1)+?' dt . . . . .  - 
(8) 

To find the stationary solution, one seeks a translation-invariant 
solution of the form 

RL --= Rx + L,x = At exp( - L/i) (9) 

By substituting (9) into (7), treating (8) as the boundary condition, one 
gets 

l - -  ( 1 - -  / - ' 2 ) 1 / 2  
1 = - l o g  (10) 

F 

and 

A 1 ( l l )  
7 + t e l  - e x p ( -  1/4)] 

where 

F = 7  +~ l + e  ~>7 

In the limit e ~ 0, F ~ 7, the correct equilibrium result RL = tanhC(flJ) 
is recovered: while in the opposite limit e---, o% which was considered in 
ref. 1, RL becomes 

RL = [2e(1 -- 7)] -1/2 exp{ -- [2(1 -- 7)/e] 1/2 L} (12) 

This is in accord with the exact scaling behavior obtained in ref. 1 for the 
same limit. 

Figure 1 is a plot of the exact solution (9) against the simulation data, 
which was done on a one-dimensional periodic chain with 100 lattice sites. 
The agreement is quite good. 
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3. D ISCUSSION OF THE T W O - D I M E N S I O N A L  PAIR 
CORRELATION FUNCTION 

In two dimensions, the problem becomes much more involved due to 
multispin correlations. However, for high temperatures, one may neglect 6 2 
in (2) and so render the problem trivial again. 

Indeed, for ] x - y l  >1 one finds, by setting (6) to zero, that 
the stationary solution Rx,), satisfies the following difference equation 
[assuming x = (ql, q2),  Y = (q3,  q4) and denoting ElRx, y -  R(q1+ l.q2).y, 
E3Rx, y - Rx.(q3+ 1,q4), etc.]: 

2R~ ; /"2 , ----~ ~, 4 ( E j + E f ' ) R  .... =0 (13) 
j = l  

where /"2 = (72-'}-8)/(1 + E ) .  The form of (13) is reminiscent of random 
walks. Indeed, it is precisely that of a two-dimensional isotropic lattice 
walk with successive steps limited only to nearest neighboring sites. Its 
solution in that context is well known. I solve it by the lattice Green's 
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Fig. 1. One-dimensional pair correlation versus distance. The squares are the simulation 
data on a periodic chain with 100 lattice sites, t =_ k T / J .  
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function techniques of Montroll. (4) It is easily verified that the solution can 
be written as R ..... = A 2 G ( x - y )  for x # y with the lattice Green's function 

1 f'~ exp( ik : r !  d2 k 
G(r) =(-~)2 ~ 2--F2(ci + 2) (14) 

q = cos kj 

Again A 2 has to be determined by requiring Rx, y to satisfy the 
"boundary conditions," which can be found from (6) by setting x = (1, 0), 
y = 0 ,  

F 2 - ( 2 + 3  e) 0 = '~-  ~ R(l,O), 0 

y2 -}-/3 + ---~(R(2,o).o+R(l,1),o+R(l_l),o+R(l,o),(_~,o) 

+ R(l,o),(o,~ ) + R(l,o),(o ' _~) (15) 

Solving (15) for A2, one finds 

1 
A2 = (16) 

1 + e [ G ( O )  - G ( 1 ) ] / F  2 

By making use of the identity 

1 
I n e x p ( - z t )  dt 

Z ~o 

one can rewrite G in the form 

1 ~176 (F22)  l m ( F 2 2 ) e x p ( - t ) d t  (17) G ( x = ( n , m ) ) = S f  ~ I .  

where I.(z) is the modified Bessel function of order n. Since G(0)= 
(l /g) K(F2/2 ) with K(z) the elliptic function of the first kind, and 

a ( 0 ) -  1/2 K ( F d 2 ) -  1/2 
G(1) = 

F2 /'2 

one may write A2 more explicitly 

1 
A 2 = ( 1 8 )  

1 + ~[ l /2  - (1 - r 2 )  K ( r 2 ) ( 1 / ~ ) l / r  2 
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Once more, in the limit e---* 0, one recovers the high-temperature solution 
of the Glauber dynamics, which is exactly the Onsager equilibrium result 
for small ft.(s) In the other limit, e --, c~, one can see easily from Eq. (16) or 
Eq. (18) that R(x) behaves like ~ l/z, which is the right scaling form in two 
dimensions. (1) It turns out that putting 32=0  reduces the  spin-flip 
dynamics defined by (2) for F2<  1 to a voter model with independent 
spin flips, a well-known stochastic dynamical model in the mathematical 
literature. 3 

If 32 cannot be neglected, one may rewrite the difference equation (6) 
(setting the right-hand side equal to zero) the following form (for the 
lattice spacing between x and y ~> 2): 

F2 32 Rx, y(~,)=-~-~e Rx+e,y(~,)-~--~-~ Ox+e,y(~ ) (19)  

where z~ 2 ~ 32 / (1  +8), e is a unit vector, and 

Ux+e,y~-Iax+eaY~x (TX, ) (20) 

Due to the identity 6 2 =  1, these U's contain the four-spin correlation 
functions. If one uses 

tanh(4fiJ) + 2 tanh(2fiJ) 
/ ' 2  = (21 ) 

2 

to define a new temperature variable fl(F2), and defines 

tanh(4flJ) - 2 tanh(2fiJ) 
A2 = 2 (22) 

then the corresponding equilibrium functions defined by 

ZL(F2)=RL(O)I~=& and CL(F2) = UL(O)t~=& 
at the new temperature will surely satisfy 

F2 C +e(r2) (23) 

where L denotes the vector connecting a pair of lattice sites. 

3 It was kindly pointed out by C. Maes that it becomes a pure voter model if "/2 = 1. It is 
known, for example, that in two dynamics there are just the two trivial stationary states (6~ 
and I show here that this remains true even if the Kawasaki dynamics is added. 
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Now suppose one makes an Ansatz (see discussion below) that 

RL(~) = A(~) xL(F2) and UL(~) = B(e) CL(F2) (24) 

Then from (19) and (23), one must have 

A2 B(e) =-z- A(e) (25) 
A2 

To determine A(e), one has to substitute (24) and (25) into the following 
boundary condition resulting from (6) for }LL = 1: 

(1 +-~)R~,o)(~) -F2+~ 4 [R(2'~ + 2R(111)(~)] 

+ ~ ~ U(i"~ ~2 (26) 

One finally obtains 

r2/(1 + ~) 
A(e)  - (27) 

/"2 -/~)~(1,0)(F2) -~- (z~2 - z~2)(A2/zJ2) •e C(1,0) + e(/~2) 

Actually, the sum of the C's in the denominator can also be expressed 
entirely in terms of the )(s through Eq. (23). 

4. S U M M A R Y  

In summary, by virtue of the above analysis, one sees that the pair 
correlation function of the stationary state in some cases can be written as 
R(x) = AG(x), where the/~ and e appear in G only through a special com- 
bination in the single parameter F(d)= [7(d)+~]/(1 +~) in dimension d. 
Therefore, one could say that the long-range behavior is qualitatively the 
same as the equilibrium Ising model but at some other effective tem- 
perature. In particular, the correlation length becomes ~(F) instead of 3(7). 
Only the amplitude is modified by A(fl, e), which is determined by the 
short-distance properties of the equilibrium pair correlations at the new 
effective temperature. Roughly speaking, the long-distance part G is 
dominated by the Glauber dynamics and the short-distance part A by the 
Kawasaki. 

The result for one dimension is exact for arbitrary e and ft. On the 
other hand, how far one can extend the two-dimensional results is still 
unknown. The result for high temperature in two dimensions is valid to 
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order/32. The exact solution in 2D for arbitrary e and/3 can only be found 
by solving the whole hierarchy of equations which couple all the multispin 
correlation functions. The solution obtained from the Ansatz (24) will 
presumably work at least for high temperatures or small e. A recent 2D 
Monte Carlo renormalization group study indicated that the phase trans- 
ition in the stationary state is indeed second order and belongs to the Ising 
universality class(8~; this seems to support the present results. But if one 
replaces the rate by the so-called Metropolis instead of Glauber for the 
"spin-flip" process, one finds a rather different picture. This was first done 
by computer simulation. (7) It was found that the stationary state undergoes 
a first-order transition if e is large enough. This is interpreted in ref. 7 as a 
crossover from the standard equilibrium phase transition at e = 0  to a 
first-order mean field type transition. The existence of a tricritical point 
(~*,/3*) was also confirmed later by Dickman, (9/ who used a mean field 
treatment to show that T~(e) is a decreasing function of e and 
magnetization becomes unstable for large e. Interestingly, there seems to be 
no crossover for the Glauber rate. Here, only in one dimension is the effec- 
tive temperature a decreasing function of e (since 7 < 1, F is always >7); 
in two dimensions, since 72 in (3) is not necessarily <1, the effective 
temperature may or may not be lower than/3-1. In fact, when/3 1 is of the 
order of the Onsager temperature, 72 is actually > 1; therefore, F 2 < 72, and 
fl(e) >/3. This is also confirmed by the computer simulations. (8) 

A more challenging question is whether, in light of Felderhof's 
work, (1~ one could directly diagonalize the master operator and solve the 
probability distribution P(a, t) exactly. I have tried without success, the 
major obstacle being the non-Hermiticity of the corresponding evolution 
operator. As a final remark, I would like to bring to the reader's attention 
the "discontinuity" of the amplitude at zero distance, 

Rx.x-I>~AG(O)=A for e~a0 

which is caused by a 6 potential imposed by the boundary conditions for 
nonzero e. This inhomogeneity due to the exclussion effect of the Kawasaki 
dynamics constitutes the major difficulty in the investigation of the multi- 
spin correlation functions. 
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